BLOGGER TEMPLATES AND TWITTER BACKGROUNDS »

Thursday, August 20, 2009

Algebra

Algebra is the branch of mathematics concerning the study of the of operations and the things which can be constructed from them including terms, polynomials, equations and algebraic structures. Together with geometry, analysis, combinatorics, and number theory, algebra is one of the main branches of pure mathematics.

Elementary algebra is often part of the curriculum in secondary education and introduces the concept of variables representing numbers. Statements based on these variables are manipulated using the rules of operations that apply to numbers, such as addition. This can be done for a variety of reasons, including equation solving.

Algebra is much broader than elementary algebra and studies what happens when different rules of operations are used and when operations are devised for things other than numbers. Addition and multiplication can be generalised and their precise definitions lead to structures such as groups, rings and fields.

History


While the word "algebra" comes from Arabic word (al-jabr, الجبر literally, restoration), its origins can be traced to the ancient Babylonians,[1] who developed an advanced arithmetical system with which they were able to do calculations in an algorithmic fashion. The Babylonians developed formulas to calculate solutions for problems typically solved today by using linear equations, quadratic equations, and indeterminate linear equations. By contrast, most Egyptians of this era, and most Indian, Greek and Chinese mathematicians in the first millennium BC, usually solved such equations by geometric methods, such as those described in the Rhind Mathematical Papyrus, Sulba Sutras, Euclid's Elements, and The Nine Chapters on the Mathematical Art. The geometric work of the Greeks, typified in the Elements, provided the framework for generalizing formulae beyond the solution of particular problems into more general systems of stating and solving equations, though this would not be realized until the medieval Muslim mathematicians.

The Hellenistic mathematicians Hero of Alexandria and Diophantus [2] as well as Indian mathematicians such as Brahmagupta continued the traditions of Egypt and Babylon, though Diophantus' Arithmetica and Brahmagupta's Brahmasphutasiddhanta are on a higher level.[3] Later, Arab and Muslim mathematicians developed algebraic methods to a much higher degree of sophistication. Although Diophantus and the Babylonians used mostly special ad hoc methods to solve equations, Al-Khowarazmi was the first to solve equations using general methods. He solved the linear indeterminate equations, quadratic equations, second order indeterminate equations and equations with multiple variable.

The word "algebra" is named after the Arabic word "al-jabr , الجبر" from the title of the book al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala , الكتاب المختصر في حساب الجبر والمقابلة, meaning The book of Summary Concerning Calculating by Transposition and Reduction, a book written by the Islamic Persian mathematician, Muhammad ibn Mūsā al-Khwārizmī (considered the "father of algebra"), in 820. The word Al-Jabr means "reunion"[4]. The Hellenistic mathematician Diophantus has traditionally been known as the "father of algebra" but in more recent times there is much debate over whether al-Khwarizmi, who founded the discipline of al-jabr, deserves that title instead.[5] Those who support Diophantus point to the fact that the algebra found in Al-Jabr is slightly more elementary than the algebra found in Arithmetica and that Arithmetica is syncopated while Al-Jabr is fully rhetorical.[6] Those who support Al-Khwarizmi point to the fact that he introduced the methods of "reduction" and "balancing" (the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation) which the term al-jabr originally referred to,[7] and that he gave an exhaustive explanation of solving quadratic equations,[8] supported by geometric proofs, while treating algebra as an independent discipline in its own right.[9] His algebra was also no longer concerned "with a series of problems to be resolved, but an exposition which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study." He also studied an equation for its own sake and "in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems."[10]

The Persian mathematician Omar Khayyam is credited with identifying the foundations of algebraic geometry and found the general geometric solution of the cubic equation. Another Persian mathematician, Sharaf al-Dīn al-Tūsī, found algebraic and numerical solutions to various cases of cubic equations.[11] He also developed the concept of a function.[12] The Indian mathematicians Mahavira and Bhaskara II, the Persian mathematician Al-Karaji,[13] and the Chinese mathematician Zhu Shijie, solved various cases of cubic, quartic, quintic and higher-order polynomial equations using numerical methods. In 1637 Rene Descartes published La Géométrie, inventing analytic geometry and introducing modern algebraic notation.

Another key event in the further development of algebra was the general algebraic solution of the cubic and quartic equations, developed in the mid-16th century. The idea of a determinant was developed by Japanese mathematician Kowa Seki in the 17th century, followed by Gottfried Leibniz ten years later, for the purpose of solving systems of simultaneous linear equations using matrices. Gabriel Cramer also did some work on matrices and determinants in the 18th century. Abstract algebra was developed in the 19th century, initially focusing on what is now called Galois theory, and on constructibility issues.

Classification


Algebra may be divided roughly into the following categories:

In some directions of advanced study, axiomatic algebraic systems such as groups, rings, fields, and algebras over a field are investigated in the presence of a geometric structure (a metric or a topology) which is compatible with the algebraic structure. The list includes a number of areas of functional analysis:

0 comments: